NO is related to the pathological condition acute renal failure, in which we previously observed that the level of soluble dipeptidase in urine was decreased. In this study the role of NO in the shedding of the glycosylphosphatidylinositol (GPI)-anchored form of renal dipeptidase (RDPase) was examined. The NO donors sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine rapidly inhibited the release of RDPase from porcine kidney proximal tubules. The substrate of NO synthase, l-Arg, also inhibited the release of RDPase, and this effect was reversed by the NO synthase inhibitor N(omega)-nitro-l-arginine methyl ester. Western-blot analyses using antibodies raised against porcine RDPase and the inositol-1,2-cyclic monophosphate moiety formed on phospholipase C cleavage of the GPI anchor demonstrated that SNP mediated its inhibitory effect on the release of RDPase via a GPI-specific phospholipase C (GPI-PLC). Peroxynitrite scavengers (deferoxamine and superoxide dismutase) or reducing agent (dithiothreitol) did not affect SNP's inhibition of the release of RDPase. Exposure to the G-protein activator AlF(-)(4) mimicked the l-Arg effect in the presence of a low concentration of l-Arg, and the effect was completely reversed by U73122, an intracellular phosphatidylinositol-specific PLC (PI-PLC) inhibitor. These results suggest a signal-transduction pathway involving NO, which is produced by NO synthase(s) following activation of a G-protein-coupled PI-PLC, resulting in inhibition of the GPI-PLC that cleaves and releases RDPase. Therefore, this indicates a role for NO as an inhibitory regulator of the shedding of the GPI-anchored RDPase in acute renal failure.
Nitric oxide inhibits the shedding of the glycosylphosphatidylinositol-anchored dipeptidase from porcine renal proximal tubules.
阅读:4
作者:Park Sung Wook, Yoon Hyun Joong, Lee Hwanghee Blaise, Hooper Nigel M, Park Haeng Soon
| 期刊: | Biochemical Journal | 影响因子: | 4.300 |
| 时间: | 2002 | 起止号: | 2002 May 15; 364(Pt 1):211-8 |
| doi: | 10.1042/bj3640211 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
