BACKGROUND: More and more studies show that miRNA plays a crucial role in plants' response to different abiotic stresses. However, traditional experimental methods are often expensive and inefficient, so it is important to develop efficient and economical computational methods. Although researchers have developed machine learning-based method, the information of miRNAs and abiotic stresses has not been fully exploited. Therefore, we propose a novel approach based on graph neural networks for predicting potential miRNA-abiotic stress associations. RESULTS: In this study, we fully considered the multi-source feature information from miRNAs and abiotic stresses, and calculated and integrated the similarity network of miRNA and abiotic stress from different feature perspectives using multiple similarity measures. Then, the above multi-source similarity network and association information between miRNAs and abiotic stresses are effectively fused through heterogeneous networks. Subsequently, the Restart Random Walk (RWR) algorithm is employed to extract global structural information from heterogeneous networks, providing feature vectors for miRNA and abiotic stress. After that, we utilized the graph autoencoder based on GIN (Graph Isomorphism Networks) to learn and reconstruct a miRNA-abiotic stress association matrix to obtain potential miRNA-abiotic stress associations. The experimental results show that our model is superior to all known methods in predicting potential miRNA-abiotic stress associations, and the AUPR and AUC metrics of our model achieve 98.24% and 97.43%, respectively, under five-fold cross-validation. CONCLUSIONS: The robustness and effectiveness of our proposed model position it as a valuable approach for advancing the field of miRNA-abiotic stress association prediction.
Predicting abiotic stress-responsive miRNA in plants based on multi-source features fusion and graph neural network.
阅读:4
作者:Chang Liming, Jin Xiu, Rao Yuan, Zhang Xiaodan
| 期刊: | Plant Methods | 影响因子: | 4.400 |
| 时间: | 2024 | 起止号: | 2024 Feb 24; 20(1):33 |
| doi: | 10.1186/s13007-024-01158-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
