BACKGROUND: Pepper is one of the most cultivated crops worldwide, but is sensitive to salinity. This sensitivity is dependent on varieties and our knowledge about how they can face such stress is limited, mainly according to a molecular point of view. This is the main reason why we decided to develop this transcriptomic analysis. Tolerant and sensitive accessions, respectively called A25 and A6, were grown for 14âdays under control conditions and irrigated with 70âmM of NaCl. Biomass, different physiological parameters and differentially expressed genes were analysed to give response to differential salinity mechanisms between both accessions. RESULTS: The genetic changes found between the accessions under both control and stress conditions could explain the physiological behaviour in A25 by the decrease of osmotic potential that could be due mainly to an increase in potassium and proline accumulation, improved growth (e.g. expansins), more efficient starch accumulation (e.g. BAM1), ion homeostasis (e.g. CBL9, HAI3, BASS1), photosynthetic protection (e.g. FIB1A, TIL, JAR1) and antioxidant activity (e.g. PSDS3, SnRK2.10). In addition, misregulation of ABA signalling (e.g. HAB1, ERD4, HAI3) and other stress signalling genes (e.g. JAR1) would appear crucial to explain the different sensitivity to NaCl in both accessions. CONCLUSIONS: After analysing the physiological behaviour and transcriptomic results, we have concluded that A25 accession utilizes different strategies to cope better salt stress, being ABA-signalling a pivotal point of regulation. However, other strategies, such as the decrease in osmotic potential to preserve water status in leaves seem to be important to explain the defence response to salinity in pepper A25 plants.
Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach.
阅读:4
作者:López-Serrano Lidia, Calatayud Ãngeles, López-Galarza Salvador, Serrano Ramón, Bueso Eduardo
| 期刊: | BMC Plant Biology | 影响因子: | 4.800 |
| 时间: | 2021 | 起止号: | 2021 Apr 8; 21(1):169 |
| doi: | 10.1186/s12870-021-02938-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
