A gene(s) for all-trans-retinoic acid-induced forelimb defects mapped and confirmed to murine chromosome 11.

阅读:4
作者:Lee Grace S, Cantor Rita M, Abnoosian Arin, Park Euisun, Yamamoto Mitsuko L, Hovland David N Jr, Collins Michael D
All-trans-retinoic acid (RA) induces various anatomical limb dysmorphologies in mice dependent on the time of exposure. During early limb development, RA induces forelimb ectrodactyly (digital absence) with varying susceptibilities for different inbred mouse strains; C57BL/6N are highly susceptible while SWV are resistant. To isolate the genetic basis of this defect, a full-genome scan was performed in 406 backcross fetuses of F(1) males to C57BL/6N females. Fetuses were exposed via a maternal injection of 75 mg of RA per kilogram of body weight on gestational day 9.25. The genome-wide analysis revealed significant linkage to a chromosome 11 locus near D11Mit39 with a maximum LOD score of 9.0 and to a chromosome 4 locus near D4Mit170. An epistatic interaction was detected between loci on chromosome 11 (D11Mit39) and chromosome 18 (D18Mit64). Linkage to the chromosome 11 locus (D11Mit39) was confirmed in RA-treated backcross fetuses of F(1) females to C57BL/6N males. Loci associated with bone density/mass in both human and mouse were previously detected in the same region, suggesting a mechanistic linkage with bone homeostasis. The human syntenic region of this locus has been previously linked to Meckel syndrome; the phenotype includes postaxial polydactyly, an ectopic digital defect hypothesized to be induced by a common molecular pathway with ectrodactyly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。