Bias Reduction Methods for Propensity Scores Estimated from Error-Prone EHR-Derived Covariates.

阅读:10
作者:Harton Joanna, Mamtani Ronac, Mitra Nandita, Hubbard Rebecca A
As the use of electronic health records (EHR) to estimate treatment effects has become widespread, concern about bias introduced by error in EHR-derived covariates has also grown. While methods exist to address measurement error in individual covariates, little prior research has investigated the implications of using propensity scores for confounder control when the propensity scores are constructed from a combination of accurate and error-prone covariates. We reviewed approaches to account for error in propensity scores and used simulation studies to compare their performance. These comparisons were conducted across a range of scenarios featuring variation in outcome type, validation sample size, main sample size, strength of confounding, and structure of the error in the mismeasured covariate. We then applied these approaches to a real-world EHR-based comparative effectiveness study of alternative treatments for metastatic bladder cancer. This head-to-head comparison of measurement error correction methods in the context of a propensity score-adjusted analysis demonstrated that multiple imputation for propensity scores performs best when the outcome is continuous and regression calibration-based methods perform best when the outcome is binary.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。