Biosynthesis of salvinorin A proceeds via the deoxyxylulose phosphate pathway.

阅读:3
作者:Kutrzeba Lukasz, Dayan Franck E, Howell J'Lynn, Feng Ju, Giner José-Luis, Zjawiony Jordan K
Salvinorin A, a neoclerodane diterpenoid, isolated from the Mexican hallucinogenic plant Salvia divinorum, is a potent kappa-opioid receptor agonist. Its biosynthetic route was studied by NMR and HR-ESI-MS analysis of the products of the incorporation of [1-(13)C]-glucose, [Me-(13)C]-methionine, and [1-(13)C;3,4-(2)H2]-1-deoxy-D-xylulose into its structure. While the use of cuttings and direct-stem injection were unsuccessful, incorporation of (13)C into salvinorin A was achieved using in vitro sterile culture of microshoots. NMR spectroscopic analysis of salvinorin A (2.7 mg) isolated from 200 microshoots grown in the presence of [1-(13)C]-glucose established that this pharmacologically important diterpene is biosynthesized via the 1-deoxy-D-xylulose-5-phosphate pathway, instead of the classic mevalonic acid pathway. This was confirmed further in plants grown in the presence of [1-(13)C;3,4-(2)H2]-1-deoxy-D-xylulose. In addition, analysis of salvinorin A produced by plants grown in the presence of [Me-(13)C]-methionine indicates that methylation of the C-4 carboxyl group is catalyzed by a type III S-adenosyl-L-methionine-dependent O-methyltransferase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。