Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder diagnosed by clinicians and experts through questionnaires, observations, and interviews. Current diagnostic practices focus on social and communication impairments, which often emerge later in life. This delay in detection results in missed opportunities for early intervention. Gait, a motor behavior, has been previously shown to be aberrant in children with ASD and may be a biomarker for early detection and diagnosis of ASD. The current study assessed gait in children with ASD using a single RGB camera-based pose estimation method by MediaPipe (MP). Data from 32 children with ASD and 29 typically developing (TD) children were collected. The ASD group exhibited significantly reduced step length and right elbow° and increased right shoulder° relative to TD children. Four machine learning (ML) algorithms were employed to classify the ASD and TD children based on the statistically significant gait parameters. The binomial logistic regression (Logit) performed the best, with an accuracy of 0.82, in classifying the ASD and TD children. The present study demonstrates the use of gait analysis and ML techniques for the early detection of ASD.
Early detection of autism spectrum disorder: gait deviations and machine learning.
阅读:3
作者:Ganai Umer Jon, Ratne Aditya, Bhushan Braj, Venkatesh K S
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 6; 15(1):873 |
| doi: | 10.1038/s41598-025-85348-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
