Optimization of MoNiCr Alloy Production Through Additive Manufacturing.

阅读:4
作者:Duchek Michal, Nachazelova Daniela, Koukolikova Martina, Brazda Michal, Ludvik Pavel, Strejcius Josef, Novy Zbysek
One of the concepts behind Generation IV reactors is a molten salt coolant system, where the materials for the reactor itself and for the primary and secondary circuit components are subjected to extreme chemical and thermal stresses. Due to the unavailability of these materials, a nickel-molybdenum alloy known as MoNiCr has been developed in the Czech Republic. This paper discusses the manufacturing process for the MoNiCr alloy, covering conventional casting technology, forming, powder atomization, additive manufacturing (AM) using the directed energy deposition (DED-LB) process, and final heat treatment. Special attention was given to the quality of the input powders for additive manufacturing, particularly regarding the optimization of the chemical composition, which significantly influenced the quality of the additively manufactured components. AM enables the realization of complex structural designs that are critical for energy applications, despite the high susceptibility of the MoNiCr alloy to solidification cracking. Through AM, a test body was successfully produced with a maximum defect rate of 0.03% and the following mechanical properties: a yield strength (YS) of 279 MPa, an ultimate tensile strength (UTS) of 602 MPa, and an elongation (El) of 51%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。