Alternative selection rules for one- and two-photon transitions in tribenzotetraazachlorin: quasi-centrosymmetrical π-conjugation pathway of formally non-centrosymmetrical molecule.

阅读:4
作者:Makarov Nikolay S, Drobizhev Mikhail, Wicks Geoffrey, Makarova Elena A, Lukyanets Evgeny A, Rebane Aleksander
We compare the two-photon absorption (2PA) spectra of non-centrosymmetrical metal-free tribenzo-tetraazachlorin (H2TBTAC) and analogous symmetrical tetra-tert-butyl-phthalocyanine (H2TtBuPc). Surprisingly, despite formal lack of center of inversion, the 2PA spectrum of H2TBTAC displays a two-photon allowed transition at 935 nm, similar to gerade-gerade (g-g) transitions observed in H2TtBuPc and in other symmetrical phthalocyanines. This transition is even better resolved in the singlet-singlet excited-state absorption spectrum. We tentatively explain the survival of the g-g transition in H2TBTAC by assuming that the main π-electron conjugation pathway in the tetraaza-substituted tetrapyrrole macrocycle bypasses the outer parts of the two oppositely located isoindole rings and thus renders the optically responsive core of the chromophore quasi-centrosymmetrical. By using the independently measured ground- and excited-state absorption extinction coefficients, we also show that the two-photon absorptivity can be quantitatively explained by a simple three-level model with the lowest energy Q1 state serving as an intermediate level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。