Study on accumulation deformation characteristics of silty clay based on dynamic triaxial tests.

阅读:4
作者:Chen Guoqiang, Yang Wenjie, Pan Yuangui, Zheng Yuchao, Zhang Huijian, Shao Shiyou, Lu Feng, Yang Chuhan, Guo Leilei
Silty clay is a common compressible soil found in many engineering projects, where its deformation behavior is particularly complex under cyclic loading. This study uses the GDS dynamic triaxial testing system to examine how silty clay deforms under different moisture contents, confining pressures, and cyclic stress ratios (CSR). The results show that the cumulative strain of silty clay follows a three-phase pattern: an initial rapid increase (N = 0-300), followed by a slower rise (N = 300-1000), and finally reaching a stable state (N > 1000). Among the factors tested, CSR has the most significant impact on cumulative strain, with moisture content coming second, while confining pressure has a relatively minor effect. After 1000 cycles, cumulative strain shows a clear linear growth trend. Linear fitting analysis indicates that the uncertainty in the fitted curve is influenced by moisture content, confining pressure, and CSR. Uncertainty is greater at both low and high moisture content levels, while it is lower under moderate moisture conditions. These findings provide valuable insights into predicting soil deformation in engineering applications, helping to improve our understanding of silty clay behavior under cyclic loading.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。