Interactive effects of osmotic stress and burrowing activity on protein metabolism and muscle capacity in the soft shell clam Mya arenaria

渗透胁迫和挖洞活动对软壳蛤Mya arenaria蛋白质代谢和肌肉能力的相互作用

阅读:6
作者:Fouzia Haider, Eugene P Sokolov, Stefan Timm, Martin Hagemann, Esther Blanco Rayón, Ionan Marigómez, Urtzi Izagirre, Inna M Sokolova

Abstract

Bioturbators such as sediment-dwelling marine bivalves are ecosystem engineers that enhance sediment-water exchange and benthic-pelagic coupling. In shallow coastal areas, bivalves are exposed to frequent disturbance and salinity stress that might negatively affect their activity and physiological performance; however, the mechanisms underlying these effects are not fully understood. We investigated the effects of osmotic stress (low and fluctuating salinity) and repeated burrowing on aerobic and contractile capacity of the foot muscle (assessed by the activity of succinate dehydrogenase and myosin ATPase) as well as the levels of organic osmolytes (free amino acids) and biochemical markers of protein synthesis and proteolysis in key osmoregulatory and energy storing tissues (gills and hepatopancreas, respectively) in a common bioturbator, the soft shell clam Mya arenaria. Osmotic stress and exhaustive exercise altered the foot muscle capacity of soft shell clams and had a strong impact on protein and amino acid homeostasis in tissues not directly involved in locomotion. Acclimation to constant low salinity (5 practical salinity units) depleted the whole-body free amino acid pool and affected protein synthesis but not protein breakdown in the gill. In contrast, fluctuating (5-15) salinity increased protein breakdown rate, suppressed protein synthesis, caused oxidative damage to proteins in the gill and selectively depleted whole-body glycine pool. Clams acclimated to normal salinity (15) increased the aerobic capacity of the foot muscle upon repeated burrowing, whereas acclimation to low and fluctuating salinity reduced this adaptive muscle plasticity. Under the normal and low salinity conditions, exhaustive exercise induced protein conservation pathways (indicated by suppression of protein synthesis and catabolism), but this effect was disrupted by fluctuating salinity. These findings indicate that exhaustive exercise and osmotic stress interactively affect whole-body protein homeostasis and functional capacity of the foot muscle in soft shell clams which might contribute to reduced burrowing activity of bivalve bioturbators in osmotically challenging environments such as estuaries and shallow coastal zones.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。