Adsorption of Bisphenol A onto β-Cyclodextrin-Based Nanosponges and Innovative Supercritical Green Regeneration of the Sustainable Adsorbent.

阅读:3
作者:Salgın Uğur, Alomari İsmail, Soyer Nagihan, Salgın Sema
Bisphenol A is a widely recognized endocrine disruptor that persists in ecosystems, harms aquatic organisms, and contributes to ecological degradation, raising global environmental concerns. Numerous studies have explored β-cyclodextrin-based adsorbents for Bisphenol A removal; however, their regeneration remains a major challenge, often relying on energy-intensive processes and excessive use of organic solvents. In this study, Bisphenol A was selected as a model pollutant, and its adsorption onto β-cyclodextrin nanosponges was investigated. After adsorption, Bisphenol A was efficiently recovered from the saturated β-cyclodextrin nanosponges using an innovative and sustainable supercritical CO(2)-based green process, which simultaneously regenerated the adsorbent. The adsorption process achieved an efficiency of 95.51 ± 0.82% under optimized conditions (C(0) = 150 mg/L, m(β-CDNS) = 0.15 g, T = 25 °C, and N = 200 rpm), with a maximum adsorption capacity of 47.75 ± 0.28 mg/g. The regeneration process achieved over 99% efficiency at 60 °C and 300 bar, with 10% (v/v) ethanol as a co-solvent, nearly fully restoring the adsorbent's performance. Unlike conventional regeneration techniques, this green approach eliminates the need for environmentally harmful organic solvents while preserving the adsorbent's structural integrity, making it a highly efficient and sustainable alternative. This study is the first to demonstrate the effective application of supercritical CO(2)-based regeneration for β-cyclodextrin nanosponges in Bisphenol A removal, providing a scalable and environmentally sustainable solution for wastewater treatment. Furthermore, characterization analyses confirmed that the adsorbent retained its chemical and morphological stability after adsorption and regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。