A new decision rule based on net benefit per capita is proposed and exemplified with the aim of assisting policymakers in deciding whether to lockdown or reopen an economy-fully or partially-amidst a pandemic. Bayesian econometric models using Markov chain Monte Carlo algorithms are used to quantify this rule, which is illustrated via several sensitivity analyses. While we use COVID-19 data from the United States to demonstrate the ideas, our approach is invariant to the choice of pandemic and/or country. The actions suggested by our decision rule are consistent with the closing and reopening of the economies made by policymakers in Florida, Texas, and New York; these states were selected to exemplify the methodology since they capture the broad spectrum of COVID-19 outcomes in the U.S.
A Bayes Decision Rule to Assist Policymakers during a Pandemic.
阅读:4
作者:Cao Kang-Hua, Damien Paul, Woo Chi-Keung, Zarnikau Jay
| 期刊: | Healthcare | 影响因子: | 2.700 |
| 时间: | 2021 | 起止号: | 2021 Aug 9; 9(8):1023 |
| doi: | 10.3390/healthcare9081023 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
