Beneficial Effects of Traditional Fermented Soybean Sauce (Kanjang) on Memory Function, Body Water, and Glucose Metabolism: Roles of Gut Microbiota and Neuroinflammation.

阅读:7
作者:Yue Yu, Yang Hee-Jong, Li Chen, Ryu Myeong-Seon, Seo Ji-Won, Jeong Do Youn, Park Sunmin
Background: Traditional fermented soybean foods, acting as potential synbiotics, may help mitigate cognitive impairment associated with amnesia. This study investigated the neuroprotective effects of four kanjang (Korean fermented soy sauce) varieties and their underlying mechanisms. Methods: Male Sprague Dawley rats (n = 70) were divided into seven groups: normal control, scopolamine control, positive control (1 mg/kg bw/day of donepezil), and four scopolamine-treated groups receiving different kanjang varieties (0.5% in high-fat diet). Based on their Bacillus content, the kanjang samples were categorized as traditionally made kanjang (TMK) with high Bacillus (SS-HB), TMK with medium Bacillus (SS-MB), TMK with low Bacillus (SS-LB), and factory-made kanjang (SS-FM). Results: Scopolamine administration disrupted energy, glucose, and water metabolism and impaired memory function (p < 0.05). All kanjang treatments improved insulin sensitivity, reduced inflammation, enhanced glucose tolerance, and decreased visceral fat. SS-MB, SS-HB, and SS-FM increased skeletal muscle mass. They maintained body water homeostasis by suppressing the renin-angiotensin-aldosterone system. Kanjang treatments improved memory function, with SS-FM showing the least significant effects. The treatments reduced neuronal cell death in the hippocampal CA1 region, decreased acetylcholinesterase activity, and increased brain-derived neurotrophic factor mRNA expression. Gut microbiota analysis revealed that kanjang treatments increased Lactobacillaceae and decreased Lachnospiraceae, with SS-HB and SS-LB specifically elevating Ligilactobacillus. Metagenomic analysis demonstrated enhanced glycolysis/gluconeogenesis pathways and enhanced butanoate metabolism while reducing lipopolysaccharide biosynthesis and pro-inflammatory signaling. SS-MB and SS-LB increased intestinal goblet cell counts and the serum butyrate concentration. Conclusions: These findings suggest that kanjang consumption, particularly SS-HB and SS-LB varieties, can ameliorate memory impairment in this murine model through multiple mechanisms: metabolic improvements, enhanced neurotrophic signaling, gut microbiota modulation, and reduced neuroinflammation via gut-brain axis activation. Human clinical trials are warranted to determine if these promising neuroprotective effects translate to clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。