PURPOSE: Mammographic breast density is one of the strongest risk factors for cancer. Density assessed by radiologists using visual analogue scales has been shown to provide better risk predictions than other methods. Our purpose is to build automated models using deep learning and train on radiologist scores to make accurate and consistent predictions. APPROACH: We used a dataset of almost 160,000 mammograms, each with two independent density scores made by expert medical practitioners. We used two pretrained deep networks and adapted them to produce feature vectors, which were then used for both linear and nonlinear regression to make density predictions. We also simulated an "optimal method," which allowed us to compare the quality of our results with a simulated upper bound on performance. RESULTS: Our deep learning method produced estimates with a root mean squared error (RMSE) of 8.79 ± 0.21 . The model estimates of cancer risk perform at a similar level to human experts, within uncertainty bounds. We made comparisons between different model variants and demonstrated the high level of consistency of the model predictions. Our modeled "optimal method" produced image predictions with a RMSE of between 7.98 and 8.90 for cranial caudal images. CONCLUSION: We demonstrated a deep learning framework based upon a transfer learning approach to make density estimates based on radiologists' visual scores. Our approach requires modest computational resources and has the potential to be trained with limited quantities of data.
Automatic assessment of mammographic density using a deep transfer learning method.
阅读:5
作者:Squires Steven, Harkness Elaine, Gareth Evans Dafydd, Astley Susan M
| 期刊: | Journal of Medical Imaging | 影响因子: | 1.700 |
| 时间: | 2023 | 起止号: | 2023 Mar;10(2):024502 |
| doi: | 10.1117/1.JMI.10.2.024502 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
