Formation of brain-wide neural geometry during visual item recognition in monkeys.

阅读:9
作者:Chen He, Kunimatsu Jun, Oya Tomomichi, Imaizumi Yuri, Hori Yukiko, Matsumoto Masayuki, Tsubo Yasuhiro, Hikosaka Okihide, Minamimoto Takafumi, Naya Yuji, Yamada Hiroshi
Neural dynamics are thought to reflect computations that relay and transform information in the brain. Previous studies have identified the neural population dynamics in many individual brain regions as a trajectory geometry, preserving a common computational motif. However, whether these populations share particular geometric patterns across brain-wide neural populations remains unclear. Here, by mapping neural dynamics widely across temporal/frontal/limbic regions in the cortical and subcortical structures of monkeys, we show that 10 neural populations, including 2,500 neurons, propagate visual item information in a stochastic manner. We found that visual inputs predominantly evoked rotational dynamics in the higher-order visual area, TE, and its downstream striatum tail, while curvy/straight dynamics appeared frequently downstream in the orbitofrontal/hippocampal network. These geometric changes were not deterministic but rather stochastic according to their respective emergence rates. Our meta-analysis results indicate that visual information propagates as a heterogeneous mixture of stochastic neural population signals in the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。