Psoriasis is a chronic skin disease that is assessed visually by dermatologists. The Psoriasis Area and Severity Index (PASI) is the current gold standard used to measure lesion severity by evaluating four parameters, namely, area, erythema, scaliness, and thickness. In this context, psoriasis skin lesion segmentation is required as the basis for PASI scoring. An automatic lesion segmentation method by leveraging multiscale superpixels and [Formula: see text]-means clustering is outlined. Specifically, we apply a superpixel segmentation strategy on CIE-[Formula: see text] color space using different scales. Also, we suppress the superpixels that belong to nonskin areas. Once similar regions on different scales are obtained, the [Formula: see text]-means algorithm is used to cluster each superpixel scale separately into normal and lesion skin areas. Features from both [Formula: see text] and [Formula: see text] color bands are used in the clustering process. Furthermore, majority voting is performed to fuse the segmentation results from different scales to obtain the final output. The proposed method is extensively evaluated on a set of 457 psoriasis digital images, acquired from the Royal Melbourne Hospital, Melbourne, Australia. Experimental results have shown evidence that the method is very effective and efficient, even when applied to images containing hairy skin and diverse lesion size, shape, and severity. It has also been ascertained that CIE-[Formula: see text] outperforms other color spaces for psoriasis lesion analysis and segmentation. In addition, we use three evaluation metrics, namely, Dice coefficient, Jaccard index, and pixel accuracy where scores of 0.783%, 0.698%, and 86.99% have been achieved by the proposed method for the three metrics, respectively. Finally, compared with existing methods that employ either skin decomposition and support vector machine classifier or Euclidean distance in the hue-chrome plane, our multiscale superpixel-based method achieves markedly better performance with at least 20% accuracy enhancement.
Automatic psoriasis lesion segmentation in two-dimensional skin images using multiscale superpixel clustering.
阅读:6
作者:George Yasmeen, Aldeen Mohammad, Garnavi Rahil
| 期刊: | Journal of Medical Imaging | 影响因子: | 1.700 |
| 时间: | 2017 | 起止号: | 2017 Oct;4(4):044004 |
| doi: | 10.1117/1.JMI.4.4.044004 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
