Effect of Internal Microstructure Distribution on Quasi-Static Compression Behavior and Energy Absorption of Hollow Truss Structures.

阅读:5
作者:Ren Huilan, Shen Haiting, Ning Jianguo
In this work, hollow truss structures with different internal microstructure distributions, i.e., basic hollow truss structure (specimen HT), hollow truss structure with internal microstructure at joints (specimen HTSJ), and hollow truss structure with internal microstructure on tube walls (specimen HTSW), were designed and manufactured using a selective laser melting technique. The effect of internal microstructure distribution on quasi-static compressive behavior and energy absorption was investigated by experimental tests and numerical simulations. The experimental results show that compressive strength and specific compressive strength of specimen HTSW increase by nearly 50% and 14% compared to specimen HT, and its energy absorption per volume and mass also increase by 52% and 15% at a strain of 0.5, respectively. However, the parameters of specimen HTSJ exhibit limited improvement or even a decrease in different degrees in comparison to specimen HT. The numerical simulation indicates that internal microstructures change the bearing capacity and structural weaknesses of the cells, resulting in the different mechanical properties and energy absorptions of the specimens. Based on the internal microstructure design in this study, adding microstructures into the internal weaknesses of the cells parallel to the loading direction is an effective way to improve the compressive properties, energy absorption and compressive stability of hollow truss structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。