Understanding and improving photo-control of ion channels in nociceptors with azobenzene photo-switches.

阅读:3
作者:Mourot Alexandre, Herold Christian, Kienzler Michael A, Kramer Richard H
BACKGROUND AND PURPOSE: The photo-isomerizable local anaesthetic, quaternary ammonium-azobenzene-quaternary ammonium (QAQ), provides rapid, optical control over pain signalling without involving genetic modification. In darkness or in green light, trans-QAQ blocks voltage-gated K(+) and Na(+) channels and silences action potentials in pain-sensing neurons. Upon photo-isomerization to cis with near UV light, QAQ blockade is rapidly relieved, restoring neuronal activity. However, the molecular mechanism of cis and trans QAQ blockade is not known. Moreover, the absorption spectrum of QAQ requires UV light for photo-control, precluding use deep inside neural tissue. EXPERIMENTAL APPROACH: Electrophysiology and molecular modelling were used to characterize the binding of cis and trans QAQ to voltage-gated K(+) channels and to develop quaternary ammonium-ethylamine-azobenzene-quaternary ammonium (QENAQ), a red-shifted QAQ derivative controlled with visible light. KEY RESULTS: trans QAQ was sixfold more potent than cis QAQ, in blocking current through Shaker K(+) channels. Both isomers were use-dependent, open channel blockers, binding from the cytoplasmic side, but only trans QAQ block was slightly voltage dependent. QENAQ also blocked native K(+) and Na(+) channels preferentially in the trans state. QENAQ was photo-isomerized to cis with blue light and spontaneously reverted to trans within seconds in darkness, enabling rapid photo-control of action potentials in sensory neurons. CONCLUSIONS AND IMPLICATIONS: Light-switchable local anaesthetics provide a means to non-invasively photo-control pain signalling with high selectivity and fast kinetics. Understanding the mode of action of QAQ and related compounds will help to design of drugs with improved photo-pharmacological properties. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。