We present the results of a lab-scaled feasibility study to assess the performance of electrical resistivity tomography for detection, characterization, and monitoring of fuel grade ethanol releases to the subsurface. Further, we attempt to determine the concentration distribution of the ethanol from the electrical resistivity tomography data using mixing-models. Ethanol is a renewable fuel source as well as an oxygenate fuel additive currently used to replace the known carcinogen methyl tert-butyl ether; however, ethanol is preferentially biodegraded and a cosolvent. When introduced to areas previously impacted by nonethanol-based fuels, it will facilitate the persistence of carcinogenic fuel compounds like benzene and ethylbenzene, as well as remobilize them to the ground water. These compounds would otherwise be retained in the soil column undergoing active or passive remediation processes such as soil vapor extraction or natural attenuation. Here, we introduce ethanol to a saturated Ottawa sand in a tank instrumented for four-dimensional geoelectrical measurements. Forward model results suggest pure phase ethanol released into a water saturated silica sand should present a detectable target for electrical resistivity tomography relative to a saturated silica sand only. We observe the introduction of ethanol to the closed hydraulic system and subsequent migration over the duration of the experiment. One-dimensional and three-dimensional temporal data are assessed for the detection, characterization, and monitoring of the ethanol release. Results suggest one-dimensional geoelectrical measurements may be useful for monitoring a release, while three-dimensional geoelectrical field imaging would be useful to characterize, monitor, and design effective remediation approaches for an ethanol release, assuming field conditions do not preclude the application of geoelectrical methods. We then attempt to use predictive mixing models to calculate the distribution of ethanol concentration within the measurement domain. For this study we examine four different models: a nested parallel mixing model, a nested cubic mixing model, the complex refractive index model (CRIM), and the Lichtenecker-Rother (L-R) model. The L-R model, modified to include an electrical formation factor geometry term, provided the best agreement with expected EtOH concentrations.
Estimating biofuel contaminant concentration from 4D ERT with mixing models.
阅读:5
作者:Glaser D R, Henderson R D, Werkema D D, Johnson T J, Versteeg R J
| 期刊: | Journal of Contaminant Hydrology | 影响因子: | 4.400 |
| 时间: | 2022 | 起止号: | 2022 Jun;248:104027 |
| doi: | 10.1016/j.jconhyd.2022.104027 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
