Disruption of hippocampal neuronal circuit function depends upon behavioral state in the APP/PS1 mouse model of Alzheimer's disease.

阅读:3
作者:Zhou Heng, Li Hanyan, Gowravaram Niket, Quan Moqin, Kausar Naila, Gomperts Stephen N
The Alzheimer's disease-associated peptide amyloid-beta (Aβ) has been associated with neuronal hyperactivity under anesthesia, but clinical trials of anticonvulsants or neural system suppressors have, so far, failed to improve symptoms in AD. Using simultaneous hippocampal calcium imaging and electrophysiology in freely moving mice expressing human Aβ, here we show that Aβ aggregates perturbed neural systems in a state-dependent fashion, driving neuronal hyperactivity in exploratory behavior and slow wave sleep (SWS), yet suppressing activity in quiet wakefulness (QW) and REM sleep. In exploratory behavior and REM sleep, Aβ impaired hippocampal theta-gamma phase-amplitude coupling and altered neuronal synchronization with theta. In SWS, Aβ reduced cortical slow oscillation (SO) power, the coordination of hippocampal sharp wave-ripples with both the SO and thalamocortical spindles, and the coordination of calcium transients with the sharp wave-ripple. Physostigmine improved Aβ-associated hyperactivity in exploratory behavior and hypoactivity in QW and expanded the range of gamma that coupled with theta phase, but exacerbated hypoactivity in exploratory behavior. Together, these findings show that the effects of Aβ alone on hippocampal circuit function are profoundly state dependent and suggest a reformulation of therapeutic strategies aimed at Aβ induced hyperexcitability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。