The placement of the extreme thermophile Aquifex aeolicus in the bacterial phylogenetic tree has evoked much controversy. We investigated whether adaptations for growth at high temperatures would alter a key functional component of the replication machinery, specifically DnaG primase. Although the structure of bacterial primases is conserved, the trinucleotide initiation specificity for A. aeolicus was hypothesized to differ from other microbes as an adaptation to a geothermal milieu. To determine the full range of A. aeolicus primase activity, two oligonucleotides were designed that comprised all potential trinucleotide initiation sequences. One of the screening templates supported primer synthesis and the lengths of the resulting primers were used to predict possible initiation trinucleotides. Use of trinucleotide-specific templates demonstrated that the preferred initiation trinucleotide sequence for A. aeolicus primase was 5'-d(CCC)-3'. Two other sequences, 5'-d(GCC)-3' and d(CGC)-3', were also capable of supporting initiation, but to a much lesser degree. None of these trinucleotides were known to be recognition sequences used by other microbial primases. These results suggest that the initiation specificity of A. aeolicus primase may represent an adaptation to a thermophilic environment.
Hyperthermophilic Aquifex aeolicus initiates primer synthesis on a limited set of trinucleotides comprised of cytosines and guanines.
阅读:7
作者:Larson Marilynn A, Bressani Rafael, Sayood Khalid, Corn Jacob E, Berger James M, Griep Mark A, Hinrichs Steven H
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2008 | 起止号: | 2008 Sep;36(16):5260-9 |
| doi: | 10.1093/nar/gkn461 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
