Adaptive behavior in a dynamic environmental context often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical component of theories of dopamine's function in learning, motivation, and motor control. Yet, how dopamine neurons are involved in the revaluation of cues when the world changes, to alter our behavior, remains unclear. Here, we make use of a complementary set of in vivo approaches to clarify the contributions of the mesolimbic dopamine system to the dynamic reorganization of reward- seeking behavior. Male and female rats were trained to discriminate when a conditioned stimulus would be followed by a sucrose reward by exploiting the prior, non-overlapping presentation of a another discrete cue-an occasion setter. Only when the occasion setter's presentation preceded the conditioned stimulus did the conditioned stimulus predict sucrose delivery, dissociating the average value of the conditioned stimulus from its immediate value, on a trial-to-trial basis. Activity of ventral tegmental area dopamine neurons was essential for rats to successfully update behavioral response to the occasion setter. Moreover, dopamine release in the nucleus accumbens following the conditioned stimulus only occurred when the occasion setter indicated it would predict reward and did not reflect its average expected value. Downstream of dopamine release, we found that neurons in the nucleus accumbens dynamically tracked the value of the conditioned stimulus. Together, these results help refine notions of dopamine function, revealing a prominent contribution of the mesolimbic dopamine system to the rapid revaluation of motivation.
Contextual cues facilitate dynamic value encoding in the mesolimbic dopamine system.
阅读:6
作者:Fraser Kurt M, Collins Val, Wolff Amy R, Ottenheimer David J, Bornhoft Kaisa N, Pat Fiona, Chen Bridget J, Janak Patricia H, Saunders Benjamin T
| 期刊: | Current Biology | 影响因子: | 7.500 |
| 时间: | 2025 | 起止号: | 2025 Feb 24; 35(4):746-760 |
| doi: | 10.1016/j.cub.2024.12.031 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
