Conductive bioinks, integrated with 3D bioprinting and electrical stimulation, are essential for advancing neural tissue engineering. This study developed a SilMA/Pectin/MXene-soybean phospholipids (SP) bioink, where SilMA (silk fibroin modified with glycidyl methacrylate) provides a structural base, pectin enhances printability and shear-thinning properties, and MXene-SP improves conductivity through superior dispersibility. Increasing pectin and MXene-SP concentrations reduced the hydrogel's Young's modulus, promoting neural stem cell (NSC) differentiation into neurons. Electrochemical analyses revealed that higher MXene-SP levels decreased impedance and increased redox current, while conductivity measurements showed improved performance compared to unmodified MXene. NSCs encapsulated in the bioink achieved maximum proliferation under electrical stimulation at 300 μA for 10 min daily over 5 days. Neuronal differentiation positively correlated with MXene-SP concentration and stimulation intensity. Synaptic activity and vesicle recycling, assessed using FM1-43 dye, were significantly enhanced under electrical stimulation. This study successfully developed a biocompatible conductive bioink capable of inducing neuronal differentiation. Electrical stimulation further promoted cell proliferation, neuronal differentiation, and enhanced synaptic function. This bioink shows great potential for future applications in neural tissue engineering.
Innovative MXene/SilMA-Based Conductive Bioink for Three Dimensional Bioprinting of Neural Stem Cell Spheroids in Neural Tissue Engineering.
阅读:3
作者:Yeh Yu-Chun, Chen Pin-Yuan, Chen Ko-Ting, Lee I-Chi
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Feb 19; 17(7):10402-10416 |
| doi: | 10.1021/acsami.4c19373 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
