A new type of modular metamaterials with reprogrammable mechanical properties is proposed based on the multistability in decoupled units. This metamaterial consists of periodically arranged foldable obelisk-like (FO) units, and each unit has three interchangeable states: two different soft states and a stiff state. Therefore, such metamaterial can possess various mechanical properties with different state combinations of units. Both theoretical and experimental investigations are conducted to understand the multistability in one unit and the reprogrammed mechanical properties in a two-dimensional tessellation. Additionally, we investigate the inverse question that whether the identical force response can be generated with different geometrical design of the metamaterial and propose a way to build 3D metamaterials with intended architectures. This work establishes general principles for designing mechanical metamaterials with independently transformable modules, and opens new avenues for various potential applications such as: self-locking materials, impact mitigation and stiffness transformation materials.
Modular metamaterials composed of foldable obelisk-like units with reprogrammable mechanical behaviors based on multistability.
阅读:4
作者:Yang Nan, Zhang Mingkai, Zhu Rui, Niu Xiao-Dong
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Dec 11; 9(1):18812 |
| doi: | 10.1038/s41598-019-55222-7 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
