S-Sulfocysteine's toxic effects on HT-22 cells are not triggered by glutamate receptors, nor do they involve apoptotic or genotoxicity mechanisms.

阅读:5
作者:Tekin Volkan, Altintas Fatih, Oymak Burak, Unal Egem Burcu, Tunc-Ata Melek, Elmas Levent, Kucukatay Vural
S-Sulfocysteine (SSC) is a metabolite derived from the metabolism of sulfur-containing amino acids. It has been implicated in neurotoxicity observed in children with sulfite oxidase deficiency. The aim of our study was to confirm the neurotoxic effects of SSC using a mouse hippocampal cell line (HT-22) and to investigate the role of apoptosis in these effects, especially in terms of caspase-3 activation and genotoxicity. Based on the viability graph obtained following increasing concentrations of SSC, we determined the LC50 dose of SSC to be 125 µM by probit analysis. The cytotoxic effects of SSC were not reversed by glutamate receptor blocker administration. However, SSC treatment did not induce caspase-3 activation or induce DNA damage. Our results showed that SSC has a cytotoxic effect on neurons like glutamate, but glutamate receptor blockers reversed glutamate-induced toxicity, while these blockers did not protect neurons from SSC toxicity. The absence of caspase-3 activation and DNA fragmentation, which are indicative of apoptosis, in SSC-induced cell death suggests that alternative cell death pathways, such as necrosis and oxytosis may be implicated. Further research is necessary to fully elucidate SSC-induced cell death. The aim of our study was to confirm the neurotoxic effects of SSC using a mouse hippocampal cell line (HT-22) and to investigate the role of apoptosis in these effects, especially in terms of caspase-3 activation and genotoxicity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。