Traumatic brain injury (TBI) is an important health problem, and a leading cause of death in children worldwide. Mitochondrial dysfunction is a critical component of the secondary TBI cascades. Mitochondrial response in the pediatric brain has limited investigation, despite evidence that the developing brain's response differs from that of the adult, especially in diffuse non-impact TBI. We performed a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a swine model of diffuse TBI (rapid non-impact rotational injury: RNR), and examined the cortex and hippocampus. A substrate-uncoupler-inhibitor-titration protocol examined the role of the individual complexes as well as the uncoupled maximal respiration. Respiration per mg of tissue was also related to citrate synthase activity (CS) as an attempt to control for variability in mitochondrial content following injury. Diffuse RNR stimulated increased complex II-driven respiration relative to mitochondrial content in the hippocampus compared to shams. LEAK (State 4o) respiration increased in both regions, with decreased respiratory ratios of convergent oxidative phosphorylation through complex I and II, compared to sham animals, indicating uncoupling of oxidative phosphorylation at 24h. The study suggests that proportionately, complex I contribution to convergent mitochondrial respiration was reduced in the hippocampus after RNR, with a simultaneous increase in complex-II driven respiration. Mitochondrial respiration 24h after diffuse TBI varies by location within the brain. We concluded that significant uncoupling of oxidative phosphorylation and alterations in convergent respiration through complex I- and complex II-driven respiration reveals therapeutic opportunities for the injured at-risk pediatric brain.
Mitochondrial response in a toddler-aged swine model following diffuse non-impact traumatic brain injury.
阅读:3
作者:Kilbaugh Todd J, Karlsson Michael, Duhaime Ann-Christine, Hansson Magnus J, Elmer Eskil, Margulies Susan S
| 期刊: | Mitochondrion | 影响因子: | 4.500 |
| 时间: | 2016 | 起止号: | 2016 Jan;26:19-25 |
| doi: | 10.1016/j.mito.2015.11.001 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
