Oxidative Stress and Poly(ADPribosyl)ation in Zebrafish Eyes After Exposure to Aluminium.

阅读:11
作者:Bianchi Anna Rita, Guerretti Valeria, La Pietra Alessandra, Di Giovanni Carmen, Berman Bruno, Falace Martina, Capriello Teresa, Ferrandino Ida, De Maio Anna
Aluminium (Al) is a widespread environmental contaminant known to induce oxidative stress and genotoxic effects in aquatic organisms. While its neurotoxic properties are well documented, the molecular impact of Al on the visual system remains poorly understood. In this study, adult zebrafish (Danio rerio) were exposed to 11 mg/L Al for 10, 15, and 20 days to investigate the oxidative and genotoxic responses in ocular tissue. Activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were measured in eye supernatants to detect oxidative stress. Additionally, the activities of poly (ADP-ribose) polymerase (PARP) and poly (ADP-ribose) glycohydrolase (PARG) were assessed in tissue homogenates to evaluate oxidative DNA damage and repair processes. The results indicate that these enzymes respond to counteract the increased reactive oxygen species (ROS) induced by aluminium exposure. However, their activity may not sufficiently reduce ROS levels to fully prevent oxidative DNA damage, as evidenced by a significant rise in PARP activity during short exposure times. Over longer exposures, PARP activity returned to baseline, suggesting ocular cells may adapt to aluminium toxicity. We propose that this reduction in PARP activity is a cellular survival mechanism, as sustained activation can deplete energy reserves and trigger cell death. Finally, thin-layer chromatography confirmed that PARG facilitates the breakdown of poly (ADP-ribose) (PAR) into ADP-ribose, demonstrating the dynamic regulation of the PAR cycle, which is crucial to preventing parthanatos.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。