Extracellular matrix molecule chondroitin sulfate proteoglycans (CSPGs) are highly upregulated in scar tissues and form a potent chemical barrier for CNS axon regeneration. Recent studies support that the receptor protein tyrosine phosphatase Ï (PTPÏ) and its subfamily member leukocyte common antigen related phosphatase (LAR) act as transmembrane receptors to mediate CSPG inhibition. PTPÏ deficiency increased regrowth of ascending axons into scar tissues and descending corticospinal tract (CST) axons into the caudal spinal cord after spinal cord injury (SCI). Pharmacological LAR inhibition enhanced serotonergic axon growth in SCI mice. However, transgenic LAR deletion on axon growth in vivo and the role of LAR in regulating regrowth of other fiber tracts have not been studied. Here, we studied the role of LAR in restricting regrowth of injured descending CNS axons in deficient mice. LAR deletion increased regrowth of serotonergic axons into scar tissues and caudal spinal cord after dorsal over-hemitransection. LAR deletion also stimulated regrowth of CST fibers into the caudal spinal cord. LAR protein was upregulated days to weeks after injury and co-localized to serotonergic and CST axons. Moreover, LAR deletion improved functional recovery by increasing BMS locomotor scores and stride length and reducing grid walk errors. This is the first transgenic study that demonstrates the crucial role of LAR in restricting regrowth of injured CNS axons.
Role of CSPG receptor LAR phosphatase in restricting axon regeneration after CNS injury.
阅读:10
作者:Xu Bin, Park Dongsun, Ohtake Yosuke, Li Hui, Hayat Umar, Liu Junjun, Selzer Michael E, Longo Frank M, Li Shuxin
| 期刊: | Neurobiology of Disease | 影响因子: | 5.600 |
| 时间: | 2015 | 起止号: | 2015 Jan;73:36-48 |
| doi: | 10.1016/j.nbd.2014.08.030 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
