Light Sheet Microscopy (LSM) in conjunction with embryonic zebrafish, is rapidly advancing three-dimensional, in vivo characterization of myocardial contractility. Preclinical cardiac deformation imaging is predominantly restricted to a low-order dimensionality image space (2D) or suffers from poor reproducibility. In this regard, LSM has enabled high throughput, non-invasive 4D (3d+time) characterization of dynamic organogenesis within the transparent zebrafish model. More importantly, LSM offers cellular resolution across large imaging Field-of-Views at millisecond camera frame rates, enabling single cell localization for global cardiac deformation analysis. However, manual labeling of cells within multilayered tissue is a time-consuming task and requires substantial expertise. In this study, we applied the 3D nnU-Net with Linear Assignment Problem (LAP) framework for automated segmentation and tracking of myocardial cells. Using binarized labels from the neural network, we quantified myocardial deformation of the zebrafish ventricle across 4-6 days post fertilization (dpf). Our study offers tremendous promise for developing highly scalable and disease-specific biomechanical quantification of myocardial microstructures.
Automated cell tracking using 3D nnUnet and Light Sheet Microscopy to quantify regional deformation in zebrafish.
阅读:14
作者:Teranikar Tanveer, Saeed Saad, Le The Van, Kang Yoonsuk, Hernandez Gilberto Jr, Nguyen Phuc, Ding Yichen, Chuong Cheng-Jen, Lee Jin Young, Ko Hyunsuk, Lee Juhyun
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Nov 6 |
| doi: | 10.1101/2024.11.04.621759 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
