Highly Efficient Inverted Organic Light-Emitting Devices with Li-Doped MgZnO Nanoparticle Electron Injection Layer.

阅读:14
作者:Yoo Hwan-Jin, Kim Go-Eun, Park Chan-Jun, Lee Su-Been, Kim Seo-Young, Moon Dae-Gyu
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the inverted OLEDs, Li-doped MgZnO nanoparticles were synthesized as an electron-injection layer of the inverted OLEDs. Hexagonal wurtzite-structured Li-doped MgZnO nanoparticles were synthesized at room temperature via a solution precipitation method using LiCl, magnesium acetate tetrahydrate, zinc acetate dihydrate, and tetramethylammonium hydroxide pentahydrate. The Mg concentration was fixed at 10%, while the Li concentration was varied up to 15%. The average particle size decreased with Li doping, exhibiting the particle sizes of 3.6, 3.0, and 2.7 nm for the MgZnO, 10% and 15% Li-doped MgZnO nanoparticles, respectively. The band gap, conduction band minimum and valence band maximum energy levels, and the visible emission spectrum of the Li-doped MgZnO nanoparticles were investigated. The surface roughness and electrical conduction properties of the Li-doped MgZnO nanoparticle films were also analyzed. The inverted phosphorescent OLEDs with Li-doped MgZnO nanoparticles exhibited higher external quantum efficiency (EQE) due to better charge balance resulting from suppressed electron conduction, compared to the undoped MgZnO nanoparticle devices. The maximum EQE of 21.7% was achieved in the 15% Li-doped MgZnO nanoparticle devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。