Antiproliferative factor (APF) is a potent frizzled protein 8-related sialoglycopeptide inhibitor of bladder epithelial cell proliferation that mediates its activity by binding to cytoskeletal associated protein 4 in the cell membrane. Synthetic asialylated APF (as-APF) (Galβ1-3GalNAcα-O-TVPAAVVVA) was previously shown to inhibit both normal bladder epithelial as well as T24 bladder carcinoma cell proliferation and heparin-binding epidermal growth factor-like growth factor (HB-EGF) production at low nanomolar concentrations, and an L: -pipecolic acid derivative (Galβ1-3GalNAcα-O-TV-pipecolic acid-AAVVVA) was also shown to inhibit normal bladder epithelial cell proliferation. To better determine their spectrum of activity, we measured the effects of these APF derivatives on the proliferation of cells derived from additional urologic carcinomas (bladder and kidney), non-urologic carcinomas (ovary, lung, colon, pancreas, and breast), and melanomas using a (3)H-thymidine incorporation assay. We also measured the effects of as-APF on cell HB-EGF and matrix metalloproteinase (MMP2) secretion plus cell invasion, using qRT-PCR, Western blot and an in vitro invasion assay. L: -pipecolic acid as-APF and/or as-APF significantly inhibited proliferation of each cell line in a dose-dependent manner with IC(50)'s in the nanomolar range, regardless of tissue origin, cell type (carcinoma vs. melanoma), or p53 or ras mutation status. as-APF also inhibited HB-EGF and MMP2 production plus in vitro invasion of tested bladder, kidney, breast, lung, and melanoma tumor cell lines, in a dose-dependent manner (IC(50)â=â1-100 nM). Synthetic APF derivatives are potent inhibitors of urologic and non-urologic carcinoma plus melanoma cell proliferation, MMP2 production, and invasion, and may be useful for development as adjunctive antitumor therapy(ies).
The effect of a novel frizzled 8-related antiproliferative factor on in vitro carcinoma and melanoma cell proliferation and invasion.
阅读:4
作者:Koch Kristopher R, Zhang Chen-Ou, Kaczmarek Piotr, Barchi Joseph Jr, Guo Li, Shahjee Hanief M, Keay Susan
| 期刊: | Investigational New Drugs | 影响因子: | 2.700 |
| 时间: | 2012 | 起止号: | 2012 Oct;30(5):1849-64 |
| doi: | 10.1007/s10637-011-9746-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
