Cytocompatibility Study of Stainless Steel 316l Against Differentiated SH-SY5Y Cells.

阅读:16
作者:Zingkou Eleni, Kolianou Asimina, Angelis Georgios, Lykouras Michail, Orkoula Malvina, Pampalakis Georgios, Sotiropoulou Georgia
Stainless steel (SS) 316l constitutes a popular biomaterial with various applications as implants in cardiovascular and orthopedic surgery, as well as in dentistry. Nevertheless, its cytocompatibility against neuronal cells has not been investigated, a feature that is important for the construction of implants that require contact with neurons, e.g., neuronal electrodes. In addition, most cytocompatibility studies have focused on decorated or surface-modified SS 316l. On the other hand, SH-SY5Y cells are an established cellular model for cytocompatibility studies of potential biomaterials given their ability to differentiate into neuron-like cells. Here, we used retinoic-acid-differentiated SH-SY5Y cells and SH-SY5Y controls to investigate the cytocompatibility and biomimetics of uncoated SS 316l. The assessment of cytocompatibility was based on the determination of differentiation markers by immunofluorescence, RT-qPCR, and the neurite growth of these cells attached on SS 316l and standard tissue culture polystyrene (TCP) surfaces. Even though the neurite length was shorter in differentiated SH-SY5Y cells grown on SS 316l, no other significant changes were found. In conclusion, our results suggest that the uncoated SS 316l mimics a natural bio-surface and allows the adhesion, growth, and differentiation of SH-SY5Y cells. Therefore, this alloy can be directly applied in the emerging field of biomimetics, especially for the development of implants or devices that contact neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。