Boron-dipyrromethene Staining May Enhance Fat Detection in the MASLD Zebrafish Model: NGS-validated lncRNA Profiling.

阅读:6
作者:Jung Wookjae, Kim Min Hye, Yang Jung Wook, Kim Dong Chul, Lee Jong Sil, Lee Jeong-Hee, An Hyo Jung, Song Dae Hyun
BACKGROUND/AIM: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a serious global public health concern. Long non-coding RNAs (lncRNAs) have been identified as key contributors to MASLD pathogenesis. Zebrafish can be utilized to study the relationship between MASLD and lncRNAs because of their similarity to human genes. Oil Red O staining is a traditional method for confirming liver fatty changes; however, it has several limitations. This study aimed to evaluate the efficacy of boron-dipyrromethene (BODIPY) in detecting fatty changes in the liver. MATERIALS AND METHODS: Liver tissues were collected from 30 zebrafish that were fed a BODIPY-containing high-cholesterol diet. Oil Red O and BODIPY staining were evaluated by two pathologists, and next-generation sequencing (NGS) was performed using liver tissues categorized into high fatty change (six liver tissues) and low fatty change (six liver tissues) groups. RESULTS: BODIPY and Oil Red O staining of zebrafish liver sections correlated significantly (p=0.009). NGS identified eight differentially expressed lncRNAs with over a 10-fold difference between the high- and low-fatty acid change groups. Of these, three showed lncRNA-mRNA interaction networks linked to human disorders. CONCLUSION: BODIPY staining is a reliable alternative to Oil Red O staining for assessing fatty changes in MASLD zebrafish models, particularly when examining frozen liver sections.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。