At the oocyte-to-embryo transition the highly differentiated oocyte arrested in meiosis becomes a totipotent embryo capable of embryogenesis. Oocyte maturation (release of the prophase I primary arrest) and egg activation (release from the secondary meiotic arrest and the trigger for the oocyte-to-embryo transition) serve as prerequisites for this transition, both events being controlled posttranscriptionally. Recently, we obtained a comprehensive list of proteins whose levels are developmentally regulated during these events via a high-throughput quantitative proteomic analysis of Drosophila melanogaster oocyte maturation and egg activation. We conducted a targeted screen for potential novel regulators of the oocyte-to-embryo transition, selecting 53 candidates from these proteins. We reduced the function of each candidate gene using transposable element insertion alleles and RNAi, and screened for defects in oocyte maturation or early embryogenesis. Deletion of the aquaporin gene CG7777 did not affect female fertility. However, we identified CG5003 and nebu (CG10960) as new regulators of the transition from oocyte to embryo. Mutations in CG5003, which encodes an F-box protein associated with SCF-proteasome degradation function, cause a decrease in female fertility and early embryonic arrest. Mutations in nebu, encoding a putative glucose transporter, result in defects during the early embryonic divisions, as well as a developmental delay and arrest. nebu mutants also exhibit a defect in glycogen accumulation during late oogenesis. Our findings highlight potential previously unknown roles for the ubiquitin protein degradation pathway and sugar transport across membranes during this time, and paint a broader picture of the underlying requirements of the oocyte-to-embryo transition.
Identification of New Regulators of the Oocyte-to-Embryo Transition in Drosophila.
阅读:3
作者:Avilés-Pagán Emir E, Kang Albert S W, Orr-Weaver Terry L
| 期刊: | G3-Genes Genomes Genetics | 影响因子: | 2.200 |
| 时间: | 2020 | 起止号: | 2020 Sep 2; 10(9):2989-2998 |
| doi: | 10.1534/g3.120.401415 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
