Ammonia has been shown to function as a morphogen at multiple steps during the development of the cellular slime mold Dictyostelium discoideum; however, it is largely unknown how intracellular ammonia levels are controlled. In the Dictyostelium genome, there are five genes that encode putative ammonium transporters: amtA, amtB, amtC, rhgA, and rhgB. Here, we show that AmtA regulates ammonia homeostasis during growth and development. We found that cells lacking amtA had increased levels of ammonia/ammonium, whereas their extracellular ammonia/ammonium levels were highly decreased. These results suggest that AmtA mediates the excretion of ammonium. In support of a role for AmtA in ammonia homeostasis, AmtA mRNA is expressed throughout the life cycle, and its expression level increases during development. Importantly, AmtA-mediated ammonia homeostasis is critical for many developmental processes. amtA(-) cells are more sensitive to NH(4)Cl than wild-type cells in inhibition of chemotaxis toward cyclic AMP and of formation of multicellular aggregates. Furthermore, even in the absence of exogenously added ammonia, we found that amtA(-) cells produced many small fruiting bodies and that the viability and germination of amtA(-) spores were dramatically compromised. Taken together, our data clearly demonstrate that AmtA regulates ammonia homeostasis and plays important roles in multiple developmental processes in Dictyostelium.
Regulation of ammonia homeostasis by the ammonium transporter AmtA in Dictyostelium discoideum.
阅读:5
作者:Yoshino Ryuji, Morio Takahiro, Yamada Yoko, Kuwayama Hidekazu, Sameshima Masazumi, Tanaka Yoshimasa, Sesaki Hiromi, Iijima Miho
| 期刊: | Eukaryotic Cell | 影响因子: | 0.000 |
| 时间: | 2007 | 起止号: | 2007 Dec;6(12):2419-28 |
| doi: | 10.1128/EC.00204-07 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
