The present study examined the role of endogenous noradrenaline on glial and neuronal plasticity in the spinal cord in rats after peripheral nerve injury. An intrathecal injection of dopamine-β-hydroxylase antibody conjugated to saporin (DβH-saporin) completely depleted noradrenergic axons in the spinal cord and also reduced noradrenergic neurons in the locus coeruleus (A6) and A5 noradrenergic nucleus in the brainstem and noradrenergic axons in the paraventricular nucleus of the hypothalamus. DβH-saporin treatment itself did not alter mechanical withdrawal threshold, but enhanced mechanical hypersensitivity and intrathecal clonidine analgesia after L5-L6 spinal nerve ligation. In the spinal dorsal horn of spinal nerve ligation rats, DβH-saporin treatment increased choline acetyltransferase immunoreactivity as well as immunoreactivity in microglia of ionized calcium binding adaptor molecule 1[IBA1] and in astrocytes of glial fibrillary acidic protein, and brain-derived nerve growth factor content. DβH-saporin treatment did not, however, alter the fractional release of acetylcholine from terminals by dexmedetomidine after nerve injury. These results suggest that endogenous tone of noradrenergic fibers is not necessary for the plasticity of α2-adrenoceptor analgesia and glial activation after nerve injury, but might play an inhibitory role on glial activation. PERSPECTIVE: This study demonstrates that endogenous noradrenaline modulates plasticity of glia and cholinergic neurons in the spinal cord after peripheral nerve injury and hence influences the pathophysiology of spinal cord changes associated with neuropathic pain.
Depletion of endogenous noradrenaline does not prevent spinal cord plasticity following peripheral nerve injury.
阅读:3
作者:Hayashida Ken-Ichiro, Peters Christopher M, Gutierrez Silvia, Eisenach James C
| 期刊: | Journal of Pain | 影响因子: | 4.000 |
| 时间: | 2012 | 起止号: | 2012 Jan;13(1):49-57 |
| doi: | 10.1016/j.jpain.2011.09.009 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
