Diepoxybutane activates the mitochondrial apoptotic pathway and mediates apoptosis in human lymphoblasts through oxidative stress.

阅读:3
作者:Yadavilli Sridevi, Martinez-Ceballos Eduardo, Snowden-Aikens Janana, Hurst Angela, Joseph Tranole, Albrecht Thomas, Muganda Perpetua M
Diepoxybutane (DEB) is the most potent metabolite of the environmental chemical 1,3-butadiene (BD), which is prevalent in petrochemical industrial areas. BD is a known mutagen and human carcinogen, and possesses multi-systems organ toxicity. We recently reported that DEB-induced cell death in TK6 lymphoblasts was due to the occurrence of apoptosis, and not necrosis. In this study, we investigated the molecular mechanisms responsible for DEB-induced apoptosis in these cells. Bax and Bak were found to be over-expressed and activated, and the mitochondrial trans-membrane potential was attenuated in cells undergoing DEB-induced apoptosis. Cytochrome c was depleted from the mitochondria of TK6 cells undergoing apoptosis, and was released into the cytosol in Jurkat T-lymphoblasts exposed to the same concentrations of DEB. Executioner caspase 3 was deduced to be activated by initiator caspase 9. DEB-induced reactive oxygen species (ROS) formation, and the ROS scavenger N-acetyl-L-cysteine effectively blocked DEB-induced apoptosis in TK6 cells. Collectively, these results demonstrate that the mitochondrial apoptotic pathway is activated to mediate DEB-induced apoptosis in human TK6 lymphoblasts. These results further demonstrate that DEB-induced apoptosis is also mediated by the DEB-induced generation of ROS. This is the first report to examine the mechanism of DEB-induced apoptosis in human lymphoblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。