The most common dominantly inherited ataxia, spinocerebellar ataxia type 3 (SCA3), is an incurable neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene that encodes an abnormally long polyglutamine tract in the disease protein, ATXN3. Mice lacking ATXN3 are phenotypically normal; hence, disease gene suppression offers a compelling approach to slow the neurodegenerative cascade in SCA3. Here we tested antisense oligonucleotides (ASOs) that target human ATXN3 in two complementary mouse models of SCA3: yeast artificial chromosome (YAC) MJD-Q84.2 (Q84) mice expressing the full-length human ATXN3 gene and cytomegalovirus (CMV) MJD-Q135 (Q135) mice expressing a human ATXN3 cDNA. Intracerebroventricular injection of ASOs resulted in widespread delivery to the most vulnerable brain regions in SCA3. In treated Q84 mice, three of five tested ASOs reduced disease protein levels by >50% in the diencephalon, cerebellum, and cervical spinal cord. Two ASOs also significantly reduced mutant ATXN3 in the mouse forebrain and resulted in no signs of astrogliosis or microgliosis. In Q135 mice expressing a single ATXN3 isoform via a cDNA transgene, ASOs did not result in similar robust ATXN3 silencing. Our results indicate that ASOs targeting full-length human ATXN3 would likely be well tolerated and could lead to a preventative therapy for SCA3.
Evaluation of Antisense Oligonucleotides Targeting ATXN3 in SCA3 Mouse Models.
阅读:4
作者:Moore Lauren R, Rajpal Gautam, Dillingham Ian T, Qutob Maya, Blumenstein Kate G, Gattis Danielle, Hung Gene, Kordasiewicz Holly B, Paulson Henry L, McLoughlin Hayley S
| 期刊: | Molecular Therapy-Nucleic Acids | 影响因子: | 6.100 |
| 时间: | 2017 | 起止号: | 2017 Jun 16; 7:200-210 |
| doi: | 10.1016/j.omtn.2017.04.005 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
