UBE2W ubiquitinates N termini of proteins rather than internal lysine residues, showing a preference for substrates with intrinsically disordered N termini. The in vivo functions of this intriguing E2, however, remain unknown. We generated Ube2w germ line KO mice that proved to be susceptible to early postnatal lethality without obvious developmental abnormalities. Although the basis of early death is uncertain, several organ systems manifest changes in Ube2w KO mice. Newborn Ube2w KO mice often show altered epidermal maturation with reduced expression of differentiation markers. Mirroring higher UBE2W expression levels in testis and thymus, Ube2w KO mice showed a disproportionate decrease in weight of these two organs (~50%), suggesting a functional role for UBE2W in the immune and male reproductive systems. Indeed, Ube2w KO mice displayed sustained neutrophilia accompanied by increased G-CSF signaling and testicular vacuolation associated with decreased fertility. Proteomic analysis of a vulnerable organ, presymptomatic testis, showed a preferential accumulation of disordered proteins in the absence of UBE2W, consistent with the view that UBE2W preferentially targets disordered polypeptides. These mice further allowed us to establish that UBE2W is ubiquitously expressed as a single isoform localized to the cytoplasm and that the absence of UBE2W does not alter cell viability in response to various stressors. Our results establish that UBE2W is an important, albeit not essential, protein for early postnatal survival and normal functioning of multiple organ systems.
Loss of the Ubiquitin-conjugating Enzyme UBE2W Results in Susceptibility to Early Postnatal Lethality and Defects in Skin, Immune, and Male Reproductive Systems.
阅读:2
作者:Wang Bo, Merillat Sean A, Vincent Michael, Huber Amanda K, Basrur Venkatesha, Mangelberger Doris, Zeng Li, Elenitoba-Johnson Kojo, Miller Richard A, Irani David N, Dlugosz Andrzej A, Schnell Santiago, Scaglione Kenneth Matthew, Paulson Henry L
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2016 | 起止号: | 2016 Feb 5; 291(6):3030-42 |
| doi: | 10.1074/jbc.M115.676601 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
