Disruption of polycystin-L causes hippocampal and thalamocortical hyperexcitability.

阅读:6
作者:Yao Gang, Luo Chong, Harvey Michael, Wu Maoqing, Schreiber Taylor H, Du Yanjun, Basora Nuria, Su Xuefeng, Contreras Diego, Zhou Jing
Epilepsy or seizure disorder is among the least understood chronic medical conditions affecting over 65 million people worldwide. Here, we show that disruption of the polycystic kidney disease 2-like 1 (Pkd2l1 or Pkdl), encoding polycystin-L (PCL), a non-selective cation channel, increases neuronal excitability and the susceptibility to pentylenetetrazol-induced seizure in mice. PCL interacts with β2-adrenergic receptor (β2AR) and co-localizes with β2AR on the primary cilia of neurons in the brain. Pkdl deficiency leads to the loss of β2AR on neuronal cilia, which is accompanied with a remarkable reduction in cAMP levels in the central nervous system (CNS). The reduction of cAMP levels is associated with a reduction in the activation of cAMP response element-binding protein, but not the activation of Ca(2+)/calmodulin-dependent protein kinase II, Akt or mitogen-activated protein kinases. Our data, thus, indicate for the first time that a ciliary protein complex is required for the control of neuronal excitability in the CNS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。