PURPOSE: To determine if the brain's response to single doses predicts its response to 'biologically equivalent' fractionated doses. METHODS: Young adult male Fischer 344 rats were whole-brain irradiated with either single 11, 14, or 16.5 Gy doses of (137)Cs γ rays or their 'biologically equivalent' 20, 30, or 40 Gy fractionated doses (fWBI) delivered in 5 Gy fractions, twice/week for 2, 3, or 4 weeks, respectively. At 2 months post-irradiation, cellular markers of inflammation (total, activated, and newborn microglia) and neurogenesis (newborn neurons) were measured in 40 μm sections of the dentate gyrus (DG). RESULTS: Although the total number of microglia in the DG/hilus was not significantly different (p > 0.7) in unirradiated, single dose, and fWBI rats, single doses produced a significant (p < 0.003) increase in the percent-activated microglia; fWBI did not (p > 0.1). Additionally, single doses produced a significant (p < 0.002) dose-dependent increase in surviving newborn microglia; fWBI did not (p < 0.8). Although total proliferation in the DG was reduced equally by single and fWBI doses, single doses produced a significant dose-dependent (p < 0.02) decrease in surviving newborn neurons; fWBI did not (p > 0.6). CONCLUSIONS: These data demonstrate that the rat brain's cellular response to single doses often does not predict its cellular response to 'biologically equivalent' fWBI doses.
Cellular response of the rat brain to single doses of (137)Cs γ rays does not predict its response to prolonged 'biologically equivalent' fractionated doses.
阅读:5
作者:Greene-Schloesser Dana M, Kooshki Mitra, Payne Valerie, D'Agostino Ralph B Jr, Wheeler Kenneth T, Metheny-Barlow Linda J, Robbins Mike E
| 期刊: | International Journal of Radiation Biology | 影响因子: | 2.400 |
| 时间: | 2014 | 起止号: | 2014 Sep;90(9):790-8 |
| doi: | 10.3109/09553002.2014.933915 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
