Conclusion
Exosomes derived from MSCs acting as a delivery vehicle to deliver miR-138-5p can downregulate SIRT1 to inhibit the growth and protein expression of HSFs and attenuate pathological scars.
Methods
MSC-Exo was isolated and identified by ultracentrifugation, transmission electron microscopy, nanoparticle size measuring instrument and Western blot assays. The relationship between SIRT1 and miR-138-5p was verified by a double-luciferase reporter assay. Cell Counting Kit-8, Τranswell, scratch, and Western blot assays were used to evaluate the proliferation and migration of human skin fibroblasts (HSFs), and the protein expression of SIRT1, NF-κB, α-SMA and TGF-β1 in HSFs, respectively. Flow cytometry was used to assess the apoptosis and cell cycle of HSFs affected by SIRT1.
Results
Our study demonstrated that miR-138-5p loaded in MSC-Exo could attenuate proliferation, migration and protein expression of HSFs-derived NF-κB, α-SMA, and TGF-β1 by targeting to SIRT1 gene, which confirmed the potential effects of MSC-Exo in alleviating pathological scars by performing as a miRNA's delivery vehicle.
