The regulation of cellular metabolism and growth in response to nutrient availability is crucial for cell survival and can significantly impact on lifespan. Central to this regulation is a class of transporters that sense and transport specific nutrients and transduce the signal downstream to control genes responsible for growth and survival. In this study, we identified SUL1, a plasma membrane transporter responsible for regulating the entry of extracellular sulfate in Saccharomyces cerevisiae, as a key gene for regulating lifespan. We conducted a systematic analysis to delineate the downstream mechanism underlying the lifespan extension by SUL1 deletion. Surprisingly, we found that the lifespan-extending effect of SUL1 deletion is not due to decreased sulfate transport. The SUL1 deletion mutant exhibited decreased PKA signaling, resulting in a series of downstream effects, including increased stress-protective trehalose and glycogen, increased nuclear translocation of MSN2, elevated expression of general stress response genes, enhanced autophagy, and reduced expression of amino acid biosynthetic and ribosomal genes. We demonstrated that the observed increase in lifespan is dependent on MSN2 and autophagy pathways. Our findings exemplify the influence of nutrient signaling rather than the nutrient itself on lifespan regulation and further substantiate the pivotal role of the PKA pathway in this process.
Deletion of sulfate transporter SUL1 extends yeast replicative lifespan via reduced PKA signaling instead of decreased sulfate uptake.
阅读:8
作者:Long Juan, Ma Meng, Chen Yuting, Gong Bo, Zheng Yi, Li Hao, Yang Jing
| 期刊: | Elife | 影响因子: | 6.400 |
| 时间: | 2025 | 起止号: | 2025 Sep 3; 13:RP94609 |
| doi: | 10.7554/eLife.94609 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
