Organ-specific transcriptional and metabolic adaptations of potato plants to limited phosphate availability prior and after tuberization.

阅读:14
作者:Nasr Esfahani Maryam, Koch Lisa, Hofmann Jörg, Sonnewald Sophia, Sonnewald Uwe
While plants adapt to fluctuating phosphorus (P) availability in soils by enhancing phosphate acquisition or optimizing internal P-utilization, the spatiotemporal dynamics of these responses, particularly in crops, remain poorly understood. This study systematically investigated how and when potato organs respond to fluctuating P availability across different developmental stages using transcriptomic, metabolomic, and physiological analyses of leaves, roots, and tubers. Transcriptomic data revealed dynamic, organ- and stage-specific responses to P-deficiency, with the highest number of differentially expressed genes in leaves before tuberization and in roots during tuberization. P-deficiency led to a marked accumulation of proline in tubers and nitrogen-rich amino acids, particularly glutamine and asparagine, in roots and leaves. Carbohydrate metabolism exhibited severity- and time-dependent changes: severe P-deficiency triggered earlier, stronger, but transient carbohydrate accumulation, whereas medium P-deficiency led to a gradual and sustained increase in leaves and roots. Hexose phosphates and organic acids accumulated in roots under P-stress, especially severe P-stress, during early vegetative growth, followed by a marked reduction during tuberization. During tuber filling, severe P-deficiency reduced sucrose and starch in roots, decreased leaf starch but increased leaf sucrose, likely due to impaired translocation, and a decrease in tuber sucrose alongside increased starch due to reduced degradation. Under medium P-deficiency, sucrose and starch remained stable in leaves and tubers but declined in roots, reflecting a moderate shift in carbon allocation that maintained tuber development at the expense of root metabolism. These findings highlight the spatiotemporal regulation of metabolic and molecular responses to P-deficiency in potato and provide insights for improving nutrient use efficiency and stress resilience in crops.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。