Mitochondrial dysfunction is a critical factor in the pathogenesis of Alport syndrome (AS), contributing to podocyte injury and disease progression. Ezetimibe, a lipid-lowering drug, is known to inhibit cholesterol and fatty acid uptake and to reduce triglyceride content in the kidney cortex of mice with AS. However, its effects on lipid droplet (LD) utilization by mitochondria have not been explored. Transmission electron microscopy (TEM) and mitochondrial functional assays (ATP production, mitochondrial membrane potential, and citrate synthase activity) were used to investigate the impact of ezetimibe on LD-mitochondria contact formation and mitochondrial function in Col4a3KO (AS) and wildtype (WT) podocytes. TEM analysis revealed significant mitochondrial abnormalities in AS podocytes, including swollen mitochondria and reduced cristae density, while mitochondrial function assays showed decreased ATP production and lowered mitochondrial membrane potential. AS podocytes also demonstrated a higher content of LD but with reduced LD-mitochondria contact sites. Ezetimibe treatment significantly increased the number of LD-mitochondria contact sites, enhanced fatty acid transfer efficiency, and reduced intracellular lipid accumulation. These changes were associated with a marked reduction in the markers of lipotoxicity, such as apoptosis and oxidative stress. Mitochondrial function was significantly improved, evidenced by increased basal respiration, ATP production, maximal respiration capacity, and the restoration of mitochondrial membrane potential. Additionally, mitochondrial swelling was significantly reduced in ezetimibe-treated AS podocytes. Our findings reveal a novel role for ezetimibe in enhancing LD-mitochondria contact formation, leading to more efficient fatty acid transfer, reduced lipotoxicity, and improved mitochondrial function in AS podocytes. These results suggest that ezetimibe could be a promising therapeutic agent for treating mitochondrial dysfunction and lipid metabolism abnormalities in AS.
Ezetimibe Enhances Lipid Droplet and Mitochondria Contact Formation, Improving Fatty Acid Transfer and Reducing Lipotoxicity in Alport Syndrome Podocytes.
阅读:4
作者:Kim Jin-Ju, Yang Eun-Jeong, Molina David Judith, Cho Sunjoo, Ficarella Maria, Pape Nils, Schiffer Josephin Elizabeth, Njeim Rachel, Kim Stephanie S, Lo Re Claudia, Fontanella Antonio, Kaber Maria, Sloan Alexis, Merscher Sandra, Fornoni Alessia
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 6; 25(23):13134 |
| doi: | 10.3390/ijms252313134 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
