Minigene splicing assays reveal new insights into exonic variants of the SLC12A3 gene in Gitelman syndrome.

阅读:6
作者:Shi Xiaomeng, Wang Hong, Zhang Ruixiao, Liu Zhiying, Guo Wencong, Wang Sai, Liu Xuyan, Lang Yanhua, Bottillo Irene, Dong Bingzi, Shao Leping
BACKGROUND: Gitelman syndrome (GS) is a type of salt-losing tubular disease, most of which is caused by SLC12A3 gene variants, and missense variants account for the majority. Recently, the phenomenon of exon skipping, in which variants disrupt normal pre-mRNA splicing, has been related to a variety of diseases. Therefore, we hypothesize that a certain proportion of SLC12A3 variants can result in disease via interfering with the normal splicing process. METHODS: We analyzed 342 previously presumed SLC12A3 missense variants using bioinformatics programs and identified candidate variants that may alter the splicing of pre-mRNA through minigene assays. RESULTS: Our study revealed that, among ten candidate variants, six variants (c.602G>A, c.602G>T, c.1667C>T, c.1925G>A, c.2548G>C, and c.2549G>C) led to complete or incomplete exon skipping by affecting exonic splicing regulatory elements and/or disturbing canonical splice sites. CONCLUSION: It is worth mentioning that this is the largest study on pre-mRNA splicing of SLC12A3 exonic variants. In addition, our study emphasizes the importance of detecting splicing function at the mRNA level in GS and indicates that minigene analysis is a valuable tool for splicing functional assays of variants in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。