Oligodendrocyte progenitor cells (OPCs) differentiation into oligodendrocytes (OLs) and subsequent myelination are two closely coordinated yet differentially regulated steps for myelin formation and repair in the CNS. Previously thought as an inhibitory factor by activating Wnt/beta-catenin signaling, we and others have demonstrated that the Transcription factor 7-like 2 (TCF7l2) promotes OL differentiation independent of Wnt/beta-catenin signaling activation. However, it remains elusive if TCF7l2 directly controls CNS myelination separating from its role in upstream oligodendrocyte differentiation. This is partially because of the lack of genetic animal models that could tease out CNS myelination from upstream OL differentiation. Here, we report that constitutively depleting TCF7l2 transiently inhibited oligodendrocyte differentiation during early postnatal development, but it impaired CNS myelination in the long term in adult mice. Using time-conditional and developmental-stage-specific genetic approaches, we further showed that depleting TCF7l2 in already differentiated OLs did not impact myelin protein gene expression nor oligodendroglial populations, instead, it perturbed CNS myelination in the adult. Therefore, our data convincingly demonstrate the crucial role of TCF7l2 in regulating CNS myelination independent of its role in upstream oligodendrocyte differentiation.
Transcription factor 7-like 2 (TCF7l2) regulates CNS myelination separating from its role in upstream oligodendrocyte differentiation.
阅读:3
作者:Zhang Sheng, Zhu Meina, Lan Zhaohui, Guo Fuzheng
| 期刊: | Journal of Neurochemistry | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Jan;169(1):e16208 |
| doi: | 10.1111/jnc.16208 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
