Neuronal ferroptosis plays a vital role in the progression of neonatal hypoxic-ischemic brain damage (HIBD). M2-type microglia-derived exosomes (M2-exos) have been shown to protect neurons from ischemia-reperfusion (I/R) brain injury, but their impact on I/R-induced neuronal ferroptosis and the underlying mechanisms remain poorly understood. In this study, we used an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model in HT-22 neuronal cells to investigate how M2-exos modulate ferroptosis. We found that M2-exos were internalized by HT-22 cells and significantly attenuated OGD/R-induced ferroptosis. Mechanistically, M2-exos enhanced mitophagy, which was mediated by the upregulation of FUN14 domain-containing protein 1 (FUNDC1), thereby inhibiting ferroptosis. Further analysis revealed that M2-exos activated FUNDC1-dependent mitophagy through the AMP-activated protein kinase (AMPK)/UNC-51-like kinase 1 (ULK1) signaling pathway. Taken together, these findings suggest that M2-exos ameliorate I/R-induced neuronal ferroptosis by enhancing FUNDC1-mediated mitophagy through the activation of AMPK/ULK1 signaling pathway.
M2 microglia-derived exosomes reduce neuronal ferroptosis via FUNDC1-mediated mitophagy by activating AMPK/ULK1 signaling.
阅读:6
作者:Li Jian, Chen Qing, Gu Hao
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 23; 15(1):17955 |
| doi: | 10.1038/s41598-025-03091-8 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
