OBJECTIVE: The present study aimed to investigate the molecular events in alisol B 23-acetate (ABA) cytotoxic activity against a liver cancer cell line. METHODS: First, we employed a quantitative proteomics approach based on stable isotope labeling by amino acids in cell culture (SILAC) to identify the different proteins expressed in HepG2 liver cancer cells upon exposure to ABA. Next, bioinformatics analyses through DAVID and STRING on-line tools were used to predict the pathways involved. Finally, we applied functional validation including cell cycle analysis and Western blotting for apoptosis and mTOR pathway-related proteins to confirm the bioinformatics predictions. RESULTS: We identified 330 different proteins with the SILAC-based quantitative proteomics approach. The bioinformatics analysis and the functional validation revealed that the mTOR pathway, ribosome biogenesis, cell cycle, and apoptosis pathways were differentially regulated by ABA. G1 cell cycle arrest, apoptosis and mTOR inhibition were confirmed. CONCLUSIONS: ABA, a potential mTOR inhibitor, induces the disruption of ribosomal biogenesis. It also affects the mTOR-MRP axis to cause G1 cell cycle arrest and finally leads to cancer cell apoptosis.
Alisol B 23-acetate-induced HepG2 hepatoma cell death through mTOR signaling-initiated G(1) cell cycle arrest and apoptosis: A quantitative proteomic study.
阅读:6
作者:Xia Ji, Luo Qiang, Huang Shengbin, Jiang Fuquan, Wang Lin, Wang Guanghui, Xie Jingjing, Liu Jie, Xu Yang
| 期刊: | Chinese Journal of Cancer Research | 影响因子: | 6.300 |
| 时间: | 2019 | 起止号: | 2019 Apr;31(2):375-388 |
| doi: | 10.21147/j.issn.1000-9604.2019.02.12 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
